Weakly supervised activity analysis with spatio-temporal localisation
نویسندگان
چکیده
منابع مشابه
Weakly supervised activity analysis with spatio-temporal localisation
In computer vision, an increasing number of weakly annotated videos have become available, due to the fact it is often difficult and time consuming to annotate all the details in the videos collected. Learning methods that analyse human activities in weakly annotated video data have gained great interest in recent years. They are categorised as “weakly supervised learning”, and usually form a m...
متن کاملWeakly-supervised appraisal analysis
This article is concerned with the computational treatment of Appraisal, a Systemic Functional Linguistic theory of the types of language employed to communicate opinion in English. The theory considers aspects such as Attitude (how writers communicate their point of view), Engagement (how writers align themselves with respect to the opinions of others) and Graduation (how writers amplify or di...
متن کاملActivity Modeling with Spatio-temporal Texture Primitives
In this paper, a novel structure is proposed for human activity modeling using time sequential spatio-temporal texture primitives. Gabor filters, which are proven to be robust 2D texture representation tools, are extended to 3D domain to capture spatio-temporal texture features. A well known filtering algorithm and an unsupervised clustering algorithm, the Genetic Chromodynamics, are combined t...
متن کاملWeakly supervised parsing with rules
This work proposes a new research direction to address the lack of structures in traditional n-gram models. It is based on a weakly supervised dependency parser that can model speech syntax without relying on any annotated training corpus. Labeled data is replaced by a few hand-crafted rules that encode basic syntactic knowledge. Bayesian inference then samples the rules, disambiguating and com...
متن کاملWeakly Supervised Action Localization by Sparse Temporal Pooling Network
We propose a weakly supervised temporal action localization algorithm on untrimmed videos using convolutional neural networks. Our algorithm learns from video-level class labels and predicts temporal intervals of human actions with no requirement of temporal localization annotations. We design our network to identify a sparse subset of key segments associated with target actions in a video usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2016
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2016.08.032